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Abstract-A method is devised for the numerical analysis of structures that include semi-infinite
circular cylindrical shells. The so-called "edge stiffness coefficients" of the cylinder are used to
eliminate the semi-infinite domain. Only a small region is thus left for discretization. In this
computational domain a finite element scheme is used, which incorporates transverse shear defor­
mation. Numerical examples demonstrate the superiority of the suggested method to the standard
one.

L INTRODUCTION

It is well known that numerical methods are essential in the analysis of complex problems
of shell-type structures. Notwithstanding, most researchers would prefer to use an analytic
method whenever possible, namely when a simple enough problem is at hand, However,
there are often cases in which a small region in the problem domain makes it impossible to
find an analytic solution. The problem can "almost" be solved analytically in those cases,
but not quite. One example is the problem ofthe intersection ofa number oflong cylindrical
shells. Although most ofthe domain is "simple", the intersection region may be too complex
for analytic treatment.

It is clear that the use of a standard numerical scheme, such as the finite element
method, to solve this type ofproblem would be inefficient. It seems natural to take advantage
of the "regularity" of most of the domain and to put the numerical effort in the small
"irregular" domain only. One method that works in this fashion is the coupled boundary­
element finite-element procedure (see e.g. Zienkiewicz et al., 1977; Margulies, 1981). In this
method the entire problem is approximated from the outset. The large regular region D is
represented by a finite number of fundamental solutions which are used as trial functions
in conjunction with the boundary-element method, whereas the small irregular domain n
is discretized by the finite-element method.

In Givoli and Keller (1989), a different approach is suggested. The original problem
is replaced by an equivalent problem which is defined in the small irregular domain n. Then
the problem in n is solved using the finite-element method. Thus, the large domain D is
eliminated exactly, unlike in the coupled BE-FE method. The method devised in Givoli
and Keller (1989) has been used to solve the reduced wave equation in Keller and Givoli
(1989), and two-dimensional problems in elastostatics in Givoli (1988). Here we use the
same procedure to solve problems involving semi-infinite or infinite circular cylindrical
shells with asymmetric loading.

One application is again the analysis of the intersection of two or more long cylinders.
All the cylinders can be eliminated, leaving only the geometrically complicated intersection
region for the numerical scheme. Another example is that of an irregularly-shaped pressure
vessel from which emerge a number oflong pipes. In the current approach the discretization
of the pipes is avoided.

The procedure suggested here is as follows, First we introduce an artificial boundary
fJI which separates the irregular domain n from the regular semi-infinite domain D. Then,
we find an exact relation between displacements and forces on fJI based on an analytic
analysis in D. If U is a vector of displacement-type quantities and Y is a vector of force­
type quantities, then we find a relation of the form
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Y = -MU on !A

where M is a matrix operator. In Givoli and Keller (1989) we call M the Dirichlet-to­
Neumann map, or the DtN map, because it maps the Dirichlet-type data U to the Neumann­
type data Y. IfUn and yn are the n-th Fourier coefficients ofU and y on 14, then the above
relation can be reduced to

where the matrix sn is called the "edge stiffness matrix" in the shell literature, and its
elements are called the "edge stiffness coefficients" (see e.g. Steele, 1965; Simmonds, 1966).
This matrix sn has been used in the past to match two analytic solutions of the shell
equations. Here we use it to "match" an analytic solution with a numerical solution.

The next step is to use the DtN relation as a boundary condition on fJl, thus introducing
a problem in the small domain n which is equivalent to the original problem. Finally, this
new problem in n is solved via the finite element method.

We note that the expressions given in Steele (1965) and Simmonds (1966) for the
edge stiffness coefficients are based on an asymptotic analysis. Hence the DtN boundary
condition is not exact in this case. However, the approximation being made here is asymp­
totic in nature, not of a discretization type as in the coupled BE-FE method. The dis­
cretization in the DtN method is performed one step later.

In Section 2 we discuss the shell theories to be used in D and n and the consistency of
the matching between them. In Section 3 we present the finite element formulation for the
new problem in n. Two possible DtN boundary conditions, based on the two edge stiffness
matrices suggested by Steele (1965) and Simmonds (1966), are discussed in Section 4.
Finally, we present some numerical results in Section 5.

2. SHELL THEORIES AND MATCHING

Most of the popular "displacement" finite element methods for shells account for
transverse shear deformation. This is not only due to the significance of shear deformation
effects in moderately thick shells, but mainly because the resulting formulation is CO and
thus enables simple interpolation. The scheme we have chosen to use here is the "degenerated
shell element" procedure discussed in Hughes (1987), which incorporates transverse shear
deformation. The main assumptions of this formulation are that plane sections remain
plane, that the shell is inextensible in the thickness direction, and the "plane stress" assump­
tion. In the context ofthe flat plate problem the same assumptions constitute the Reissner­
Mindlin theory. There are five degrees of freedom at each node: three orthogonal dis­
placements and two rotations.

The DtN approach necessitates finding an analytic solution to a quite general problem.
However, the solutions available in the literature for this problem are all based on much
simpler shell theories than the one employed in our numerical scheme. In particular, they
do not include shear deformation. A "consistent" way of dealing with the DtN method
would be to use a numerical scheme and a DtN map which originate from the same shell
theory. This means either to employ a finite element scheme based on a simple theory for
which the DtN map is known, or preferably to find the DtN map for the analytically more
complicated shear deformation theory. We leave this last challenge for future work. Here
we choose to make use of already existing tools, namely to match the two solutions in spite
of their different origins.

We assume that we are dealing only with thin shells, where the transverse shear
deformation is negligible. Thus, the difference between the two shell theories is essentially
eliminated. The main difficulty which remains when trying to force such a matching is the
incompatibility in the number of boundary conditions needed in the two theories. In the
shear deformation theorY,jive prescribed values are needed at any edge point. A free edge
of a cylinder, for example, is characterized by the following conditions:
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Fig. I. Stress resultants, stress couples and displacements on the edge of a cylindrical shell.

(I)

Here x is the axial coordinate and () is the circumferential angle. The stress resultants N...
Nx9 , If.. and stress couples M x , M x9 are described in Fig. 1. N., and NX9 are normal and
shear "membrane" forces, Hx is a transverse shear force, and M., and M X9 are bending and
twisting moments. On the other hand, a theory which is based on the classic Kirchhoff­
Love hypothesis (which does not include shear deformation) requires only four boundary
conditions at each edge point. This is the outcome of the artificial reduction in the order of
the equations which occurs when neglecting transverse shear terms. It is dictated by the
mathematics, and one has to devise "effective" boundary conditions to replace the five
"physically" required boundary conditions. For example, the effective free edge condition
for a cylinder of radius a is (see Timoshenko and Woinowsky-Krieger, 1959)

(2)

where the effective forces Sx9 and Tx are defined as

(3)

(4)

When we try to combine the numerical shear deformation scheme with an analytic
solution based on the Kirchhoff-Love hypothesis we encounter a conflict between the
number and characterization of the boundary conditions in the two cases. The simplest
way out of this conflict is to assume Mx9 = 0 on the DtN boundary, thus making Sxe and
Tx equal to Nxe and H x , respectively, and identifying (I) with (2). In fact, this assumption
is too strong. If 12 is the "twist" rotation in the direction of M xe it suffices to assume that
the product M xe12 is negligible in comparison with other terms in the strain energy
expression on the DtN boundary. That this assumption indeed resolves the conflict will be
shown in Section 3.

Neglecting the "twist energy" is justified in many practical applications. For example,
in problems involving the intersection of two pressurized cylinders the twisting moment is
very small throughout the domain (see Steele and Steele, 1983). In other cases, the problem
at hand can be solved assuming a small product Mxe'X2 on the DtN boundary. Then the
validity of this assumption can be checked on the basis of the results. For instance, if the
results show that Mxe12 is small throughout the domain then it is reasonable to accept the
assumption as correct. A more general procedure would be to evaluate M xe12 on the DtN
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Fig. 2. A thin shell attached to a semi-infinite cylinder.

boundary from the numerical results, using equations of the Kirchhoff-Love-based shell
theory which relate M xo and X2 with other components, thus checking the assumption's
consistency.

A different way to overcome the conflict in the computational scheme is to use special
transition finite elements near the boundary PA which possess the additional shear-defor­
mation degrees of freedom on one side only.

3. FINITE ELEMENT FORMULATION

Figure 2 shows the midsurface A of a shell attached to a semi-infinite cylinder along a
circular artificial boundary PA of radius a, along which the DtN boundary condition will be
applied later. The external boundary of A is denoted S. A differential element of the shell
is described in Fig. 3, along with the stress resultants and couples acting on it. We use the
lines-of-curvature curvilinear coordinates eI and e2, and' is the coordinate perpendicular
to the midsurface. Let UI, U2, W be the displacements of a point of A in the directions el>
e2," and XI> X2 be the rotations about the e2 and (-el) coordinate axes, respectively. For
simplicity, suppose that the edge S is clamped, i.e. UI> U2, W, XI and X2 are prescribed to be
zero on S.

Defining the five "midsurface" strain measures 8 I h 8n, 812' 83 h 832' and the three
"curvature" strain measures 1<1 I> 1<22, 1<12 in a standard way, we have the following
variational form, or principle of virtual work (see Reddy, 1984):

0=1[e11N11 +e22N 22 +e1 2N t2 +K11M11 +KnMn+KI2MI2+e31QI +e32Q2-~'P]dA

- L,[UtNln+u2N2n+WQn+XIMln+X2M2n] dJl. (5)

Fig. 3. A differential element of a thin shell. with stress resultants and stress couples.
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The barred letters are weighting functions or "virtual" quantities, p is the distributed lateral
load, and a quantity Zn stands for L;= IZxn" where n is the normal unit vector pointing

out of S. By applying the divergence theorem to (5) one obtains the corresponding "Euler­
Lagrange" equations, in this case those of the shell theory which includes transverse shear
deformation.

Equation (5) is not yet ready for the Galerkin approximation; we still have to impose
the DtN boundary condition along f!A. This involves the relation between the stress result­
ants and the displacements on f!A. But as we have observed in Section 2 there are only four
quantities of each kind in this relation, since it is obtained from a Kirchhoff-Love theory.
Therefore, we are compelled to neglect the term X2M2n in (5). In the equivalent problem of
minimizing the potential energy functional this would correspond to neglecting the "twist
energy" term X2M2n. We also note that since f!A is actually the edge of a cylinder, we can
identify N In, N 2n, Qn, M In and M 2n along f!A with Nr• N re , Hr. Mx and M xe of Fig. 1,
respectively. Now, the DtN boundary condition is of the form

y= -MU on f!A (6)

where

yT = {Nx N re Hx l'1t/x} (7)

and

UT = {Ul U2 W xd (8)

The DtN map M in (6) is a 4 by 4 matrix operator. Equation (6) can also be written in the
more explicit form

Vex) = - Lm(x,x')U(x') dx' xef!A (9)

where m(x, x') is called the DtN kernel. With (6) substituted into (5), the variational form
becomes

+LOTMU d£f = 1wp dA. (10)

This is the starting point for the finite element approximation. Equation (10) has the form

a(O, U)+b(O, U) = /(O,p)

where the operator a(',') is the standard one, and

b(O, U) = t OTMU d£f.

(11)

(12)

The finite element scheme leads to the linear system ofequations Kd = F. The operator
b(',') contributes to the stiffness matrix K. We can write K = Ka+Kb

, where K b is the
contribution from the DtN boundary condition. The components of the DtN stiffness
matrix K b are
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(13)

Here N A and N B are the finite element shape functions associated with nodes A and B, and
i,j = 1,2,3,4 are the four degrees of freedom at nodes A and B on the boundary rJI. The
vector ej has the value 1 as the i-th component and 0 for all the other components. The fifth
degree of freedom (i,j = 5) does not contribute to Kb since it was suppressed in (10). Using
(12) and the integral representation of M we find

(14)

The construction of KG and the right-hand side vector is described in detail in Hughes
(1987). We mention that the formulation in this book employs a global Cartesian coordinate
system (X, Y, Z), and a transformation matrix q is used to transform quantities from it to
the (~ .. ~ 2, 0 system. A similar thing should be done with the DtN term if this global
approach is desired. We denote q* the transformation matrix from the local displacements
u .. U2, W, X.. to the global displacements Ux, Uy, UZ, XI (see Fig. 1). Thus,

u= [~J =q*

WJ
(15)

and

q* = [ -s~n 6

0 1

~]cos 0 0
(16)

-cos 0 -sin 0 0 o .
0 0 0 1

Then if m(x, x') still denotes the DtN kernel in the cylindrical system, (14) becomes

where the summation convention is in force.
We will see in the next section that miix, x') can be written in the separable form

<Xl

mij(x, x') = L Sij fr(x) 'lj" (x')
"-0

(no sum on i andj). Noting that dx = a dO we finally have

(17)

(18)

We see that only one-dimensional integrals need to be evaluated to account for the DtN
contribution to the stiffness matrix.

If the semi-infinite cylinder is itself loaded (e.g. with uniform internal pressure), then
the DtN map (6) becomes
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y= -MU+Z on£ll
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(20)

where Z is a given vector function (although for unifonn pressure Z is constant, Le. does
not depend on 0). The variational fonn (10) has in this case an additional tenn in the right­
hand side,

R.H.S. = i wp dA +LOTZ d£ll

which leads to the set of finite element equations

Now Fb has the fonn

in the shell coordinate system (e h e2, 0, or

F:.; = LNAeJ q*Z d£ll

(21)

(22)

(23)

(24)

if the global coordinate system is used. The vector Z for unifonn internal pressure will be
given in the next section.

4. DtN BOUNDARY CONDITION

Throughout this section the summation convention will not be in force.
To derive the DtN map, we first write the components ofU and Yin (7), (8) as Fourier

series. To this end, we define the vectors of trigonometric functions T" and t" as

(T"f = {cos nO sin nO cos nO cos nO}

(t")T = {sin nO cos nO sin nO sin nO}.

(25)

(26)

This particular definition will lead to a greater symmetry in the equations that follow. Now
we expand Y(O) and U(O):

00

Y;(O) = L [yr 17'(0)+ Y;" tr(O)]
"-0

00

U;(O) = L [Ur r;"(o) + Or tr(O)].
"_0

(27)

(28)

Here Y;", Yr, ur, Or are the Fourier coefficients. yr and Ur correspond to a symmetric
configuration of the cylinder, whereas Y;" and Or correspond to an antisymmetric con­
figuration. There are some requirements concerning the n = 0 coefficients (namely
11 = 11 = cr: = ~ = 0) as well as inter-relations between the n = 1 coefficients so that
the edge loads will be self-equilibrating and that rigid body displacements will be excluded.
The Fourier coefficients of U;(O) can be written as
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1 i~rrVi" ::: - Vi (e)Tt (e) de:
IT 0

n~1

n~l

(29)

(30)

with a factor of ~ on the right-hand side for n = O.
Our goal is to express the DtN map in terms of the relation between the Fourier

coefficients of U and Y. If we denote the vector containing {Uni~ 1.2.3.4 by U", etc., this
relation can be written in the form

Y" = S"U" (31)

(32)

However, it is easy to show that S" =S". The matrix S" is called the "edge stiffness matrix"
in the shell literature, but we will refer to it as the DtN matrix. The derivation of S" will be
discussed shortly. In indiciaI notation (31) and (32) can be written as

4

yt = L SijUj;
j= I

4
A '\' Ayr = L. SijUj.

j= I

(33)

We now combine (27), (29), (30) and (33) to finally obtain

1 4 xc i~rr
Y;(lJ) = - L L' Sij [Tr(lJ)1j"(lJ') +Tr(lJ)ij"(lJ')] Uj(lJ') dlJ'

n j= I "= 0 0

(34)

where the prime in L;=o' signifies that a factor of} should be taken for n = O. Comparing

(34) with (9) and noting that dx' = a dO' we have the desired expression for the DtN kernel:

(35)

It remains to calculate the DtN matrix S". The result will depend upon the specific
shell theory dealt with, and is not easily obtained. Fortunately, this problem has been
treated in the past. Here we consider the matrices suggested by Steele (1965) and by
Simmonds (1966).

Steele's solution is based on an asymptotic analysis of Novozhilov's shell equations
(1964). A distinction is made between "slow variation" and "rapid variation" behavior, for
which two different asymptotic solutions are valid. Steele defines the "rapidness" parameter

(36)

Here c is the reduced thickness of the cylinder, defined by c2 = t 2/12(I-v 2
) where t is the

thickness and v is the Poisson ratio. The graphs presented in Steele (1965) suggest that
0= 0.5 is a reasonable choice for the transition point from "slow variation" (0 « I) to
"rapid variation" (0)> l) for a cylinder p. = 0 in that paper). Let E be Young's modulus
and define .1 = (I +v)(3 - v). Then after rescaling the displacement and force variables in
Steele's paper as well as changing their order in the appropriate vectors, we obtain the
following results for the DtN matrix;

ForO ~ 0.5,
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gil = Et

_J2n2

~
2(l-v)03

~
(1-2v)02

a a a

(37)

whereas for 0 ~ 0.5,

c
a

20---
~.,J;;

(i-v)O 20---
SII =Et il.,J;; il.;-;;z

(1- 2v) 7+v 203#
2Aa 4Aa a

(l-v)# _# c
-20c#(l+V)02-

40il 2n~ a

(38)

Due to the symmetry of these matrices, half of the off-diagonal terms are omitted.
It is shown by Steele that for the slowly varying case, the matrix (37) is singular or

nearly singular. This might cause problems in other applications but not in the DtN method
since we do not have to invert this matrix. We add the matrix Kb to the finite element
stiffness matrix Kil which is already positive definite, and remains positive definite after this
addition.

A second DtN matrix is given by Simmonds (1966), and is based on the asymptotic
solution developed by Reissner and Simmonds (1966) to the extended Donnell equation.
From the standpoint of the DtN method this solution has some disadvantages. First, it is
algebraically more complicated than the former one. Second, only the "flexibility" matrix,
Le. the inverse of S", is calculated by Simmonds. Third, in the "slowly varying" case the
flexibility matrix is ilI-conditioned, just as in Steele (1965), and its inverse must be computed
in a special way (outlined in Simmonds, 1966). Nevertheless, this solution is also worth
trying since it is based on an entirely different shell theory than that of Steele.

This time the "rapidness" parameter is defined as

(39)

and the suggested transition point between the solution for slow variation and rapid
variation is 0* = 1. The "flexibility" matrices C" are given in Table I of Simmonds (1966)
and will not be repeated here. To obtain the matrix SII we have to invert C" and to rescale
and change the order of the variables. If we define

(40)

then
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(41)

There is an interesting interpretation of the zeroth term of the OtN map. For n = 0
the kernel mij in (35) is the constant matrix

mo= __l [~
2na

o

o
o
o

symm.] ,

SJ4

(42)

which follows from the definitions (25), (26) as well as the structure of SO in (37) when
n = O. If we denote by yO the edge force vector obtained from the zeroth term only we
then have from (9)

or in fact,

where

Y~ = Yf = 0

(43)

(44)

(45)

(46)

Hence, the zeroth term in the OtN map relates the forces on the boundary with the average
displacements on the boundary. If we use just this term as a boundary condition on 31 it
means that we are assuming the edge forces to be constant and linearly dependent on the
average displacements on 11 via the matrix So. This is a better boundary condition than
the one usually used to approximate long cylinders, namely that the edge forces (or the
displacements) are zero along the artificial edge. Thus even if only the zeroth term is used,
we can expect the OtN method to improve the finite element results.

We finally turn to the case when the semi-infinite cylinder is loaded with uniform
internal pressure q. An expression for the vector Z in (20) is desired. From the superposition
principle, this is the vector of edge forces corresponding to a clamped semi-infinite cylinder
subjected to internal pressure q. The solution for such a cylinder is

ZT = (Nx N XIJ H x M.T ) = q(O 0 -~ ac). (47)

5. NUMERICAL EXPERIMENTS

We start with the example ofan infinite cylindrical shell loaded with an external "ring"
load cos 20; see Fig. 4(a). A solution to this problem is obtained in Niordson's book (1985),
pp. 254-256. This is an exact (not asymptotic) solution to Morley-Koiter shell equations,
and we will compare our results to it. The radius of the cylinder is a = 1, the thickness
t = 0.01 and E = 104

• Then Niordson's solution for the normal displacement "'0 under the
load is
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~ ~

Fig. 4. Geometry of the two problems solved by the DtN method. (a) Infinite cylinder with a ring
load. (b) Circular rigid inclusion in a pressurized infinite cylinder.

0.01474
wo(O) = 2Etc2 cos 20. (48)

In the finite element scheme we take advantage of the symmetry by modeling only a
quarter of the cylinder's circumference (0 ~ 0 ~ n/2) and only the portion of the cylinder
on one side of the load (x ~ 0). Appropriate symmetry boundary conditions are imposed
on the edges 0 = 0 and 0 = n/2, as well as on the edge x = 0, where only half of the load
(Le. 1cos 20) is applied. An artificial boundary is introduced at x = R = 0.3. The mesh is
rectangular and composed of 30 equal bilinear elements: 10 elements in the circumferential
direction and three elements in the axial direction. The expected response has a boundary­
layer nature, and the DtN approach avoids the discretization of most of this boundary
layer. Thus only a few elements are needed, although they have to be small enough to
capture the large gradients near x = O.

In the standard finite element procedure we treat the artificial boundary as a free edge.
Since the computational domain is a very narrow band near the loaded line, the finite
element model is more similar to that of a ring than to that of an infinite cylinder. On the
other hand, the DtN approach accounts for the whole cylinder through the DtN boundary
condition.

Figure 5 shows some results for the normal deflection under the load along the
arc 0 ~ 0 ~ n/4. (The deflection along n/4 ~ 0 ~ n/2 is anti-symmetric to that shown.) The
results obtained with Steele's DtN matrix and with Simmonds' DtN matrix are both shown,
but cannot be distinguished in the plot. The difference between them is less than 1%. Both
correspond very well with Niordson's solution. Since only the second term of the DtN map
is active in this problem, this implies that the two matrices corresponding to n = 2 have an
almost identical effect. In the free-edge finite element solution the deflection is overestimated
to.a great extent, as expected.

Before moving to the next example we note that the geometrical symmetry has two
additional implications besides the ability to model only part of the shell structure. First,
when imposing the DtN boundary condition the procedure outlined in Givoli and Keller
(1989) must be applied. Second, the term f:(O)ij"(O') in the DtN kernel in (35) is not
needed and can be disregarded. It corresponds to an anti-symmetric configuration, and thus
would not contribute anything in (34) when the Uj are symmetric displacements.

We now consider the problem of a circular rigid inclusion in a pressurized infinite
cylinder, see Fig. 4(b). The cylinder is of radius a = 10, thickness t =0.2, and is pressurized
with p = 1. It is assumed to be open, i.e. no external axial load is applied. The rigid inclusion
is of radius ro = 3. We also assume E = 1 and v = 0.3.
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- Exact (Niordson)
____ ------ f.e., free edge
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Fig. S. The ring load problem: various solutions for the normal deflection under the load along the
arc 0 ~ {} ~ rrA.

The cylinder is thin (a/t = 50) and the region near the inclusion can also be regarded
as shallow, since ro/a = 3/10 < 0.5. This enables us to compare our results with those
obtained by Steele's code FAST2. See Steele and Steele (1983) and Steele (1983) for a
description of the method and performance of the code. This program is intended to solve
problems of nozzles in cylindrical vessels, but can be used to yield a solution for the problem
of a circular rigid inclusion as a special case. The FAST2 solution cannot be regarded as
the "exact solution" to our problem, but it will serve as a reference solution to compare
our results to.

Here we model only half of the cylinder's circumference (0 ~ f) ~ n) and only the
portion x ~ 0, due to the symmetry. The artificial boundary is placed at x = R = 7. The
"unfolded" mesh is described in Fig. 6, where bilinear quadrilateral elements are used. The
left edge in the figure corresponds to f) = 0 and the right edge to f) = n. Appropriate
symmetry boundary conditions are applied on these edges as well as on the lower edge,
x = O. The displacements and rotations of the nine nodes on the quarter circle which bounds
the rigid inclusion are prescribed zero. The expected response is mainly of "membrane"
type and the elements are therefore not required to be so small as in the previous example.

In the DtN approach, the DtN boundary condition is applied along the upper edge
x = 7. Since the eliminated semi-infinite cylinder is uniformly pressurized, we include the
right-hand side DtN contribution (24) in the load vector F, with the vector Z defined by
(47). In the standard finite element scheme we choose a "mixed" boundary condition on
that edge: we prescribe zero stress resultants H.< and N.<9, zero axial displacement u and
zero rotations, XI and X2'

In addition to the coordinate system (x, f)) it is convenient to introduce the polar
system (r, tP), with its origin in the inclusion's center. We also define sand y to be the
distances from the interface along the lines x = 0 and f) = 0, respectively; see Fig. 4(b).

Fig. 6. Mesh for the circular inclusion problem.
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-Fast2
------ Mixed b.c.
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Fig. 7. The circular inclusion problem: various solutions for N•• around the inclusion boundary.

Figure 1 shows the results for the membrane shear stress resultant N... around the
boundary of the inclusion. To obtain it from stress resultants given in the (x, 8) coordinate
system we use the tensorial transformation formula

(49)

The results are. shown for 0 ~ 4> ~ 90°, and are slightly asymmetric with respect to 4> = 45"
Three DtN solutions are presented. The first is based on the zeroth DtN term, which is
identical in Steele's and Simmonds' DtN solutions. The second and third are based on
Steele's and Simmonds' DtN matrices with n = 10. The result obtained by FAST2 is linearly
interpolated at the nodes. Figure 7 shows that the three DtN solutions are much closer to
the FAST2 solution than the standard finite element solution. The correspondence between
FAST2 and the DtN solutions would even be better for a smaller inclusion, where the
theory which FAST2 is based on is more accurate. We also see that the DtN solution with
n:= 10 is only slightly better than the one for n:= 0, and that Steele's and Simmonds' DtN
matrices give almost the same results. (Again they are at most 1% apart.)

-Fast2
----- Mixed b.c.
......... DtN b.c.. n-o
---Steele's DtN. 110010
- Simmonds' 0tN.n-10

13

12.5

9.5L-_..L.--1--~--=:----:=---

Fig. 8. The circular inclusion problem: various solutions for Ng along the line x .., O.
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--- Fast 2
------ Mixed b.c.
•..•.•••• DtN b.c.• n-O
_._._.- Steele's DtN. n-10
_.- Simmonds' DtN. n-10

198

12

10

8

e
=z

4

2

0

-2

Fig. 9. The circular inclusion problem: various solutions for No along the line 0 = o.

In Fig. 8 some results for No along the line x = 0 are compared, and Fig. 9 shows the
results for No along the line e= O. The difference between the DtN and standard finite
element solutions is less dramatic here, but in general the DtN solutions are closer to the
FAST2 solution. Again, the three DtN solutions are very close to each other. Since Sim­
monds' DtN matrix is algebraically more complicated than Steele's matrix and they give
practically the same results, it seems that the latter is preferable, at least for the type of
problem dealt with here.
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